
Confidential + Proprietary

Stephane Eranian
Scalable Tools Workshop 2018
Solitude, UT

Linux perf_events updates

Confidential + Proprietary

Agenda

● Quick updates on perf_events
● Cache QoS
● Code heat maps
● Branch mispredictions

Confidential + Proprietary

Perf_events news
● PERF_SAMPLE_PHYS_ADDR (v4.14)

○ Extract data physical address, useful for cache simulation

● Spectre-v1 (v4.17) protection
○ Code impact: eliminate array indexing in speculative code

● Intel Skylake uncore IIO PMU free running counters PMUs (v4.17)
○ PCIe bandwidth, utilization, IIO clockticks
○ Ex: perf stat -a -I 1000 -e uncore_iio_free_running_0/bw_in_port0/

● PMU capabilities exported in sysfs (v4.14)
% grep . /sys/bus/event_source/devices/cpu/caps/*
 /sys/bus/event_source/devices/cpu/caps/branches:32
 /sys/bus/event_source/devices/cpu/caps/max_precise:3
 /sys/bus/event_source/devices/cpu/caps/pmu_name:skylake

● Event scheduling improvements
● Lots of bugs fixes

Confidential + Proprietary

Cache QoS introduction

● Monitor cache and memory subsystem utilization per process
○ Track offenders

● Enforce cache and memory subsystem utilization restrictions per process
○ Isolate offenders

● Useful in shared runtime environments (Cloud, Web)
○ Machine is shared by workloads with different memory usage or SLO

● Hardware support introduced with Intel Haswell EP

Confidential + Proprietary

Cache QoS: cache occupancy

● Monitor cache usage (CMT) - Intel Haswell EP
○ Track new cache line allocations (loads, rfo, hw/sw prefetch)
○ Supported in L3 (L2 on some processors)
○ Tag process with RMID
○ 4 RMID per core on Haswell, 8 on later processors
○ RMID saved/restored on context switch

● Cache partitioning (CAT) - Intel Haswell EP
○ Enforce cache utilization restrictions
○ Can split Code vs. Data (CDP) on Broadwell EP and later
○ 4 CLOSID on Haswell, 16 on later processors (8 with CDP enabled)
○ Restriction enforced per way (not all combinations possible)
○ CLOSID saved/restored on context switch

Confidential + Proprietary

Cache QoS : memory bandwidth

● Monitor memory bandwidth usage (MBM) - Intel Broadwell EP
○ Count cache lines read and written back from LLC
○ Count total vs. local socket traffic
○ Tag process with RMID
○ 8 RMID per core
○ RMID saved/restored on context switch

● Memory bandwidth allocations (MBA) - Intel Skylake X
○ Restrict by percentage of total peak bandwidth per core
○ Tag process with CLOSID
○ 8 CLOSID
○ CLOSID saved/restored on context switch
○ Control enforced per core (not per socket), both hyperthread impacted
○ Control applied between L2 -> L3 => L3 hits are also slowed down

Confidential + Proprietary

Cache Qos: Linux support

● New interface introduced in Linux v4.9 (Intel contribution)
○ Using a new filesystem: resctrl
○ No cgroup, perf_events, perf tool connections anymore
○ Old interface deprecated

● Retain principles of cgroup fs
○ A global default resource group (root of fs)
○ One subdir per resource group
○ Tasks are moved into resource groups with : echo tid > tasks
○ Monitoring data read via specific file entry

● Enforcement via a programmable text-based schemata
cat schemata
L3:0=1ff;1=1ff
MB:0=100;1=100

Confidential + Proprietary

Cache QoS: example

● Cache Monitoring: Read cache occupancy on socket0 for my_grp:
$ mkdir /sys/fs/resctrl/my_grp
$ echo $$ >/sys/fs/resctrl/my_grp/tasks (move my shell into my_grp)
$ do_some_work
$ cat /sys/fs/resctrl/my_grp/mon_data/mon_L3_00/llc_occpuancy

● Bandwidth Monitoring: Read local memory bandwidth (read/write)
$ mkdir /sys/fs/resctrl/my_grp
$ echo $$ >/sys/fs/resctrl/my_grp/tasks
$ do_some_work &
$ cat /sys/fs/resctrl/my_grp/mon_data/mon_L3_00/mbm_local_bytes

● RMID Limit for CMT
○ RMID must be recycled
○ Cannot reset a RMID, must wait for line evictions
○ Kernel keeps list of RMID in limbo

Confidential + Proprietary

Cache QoS: Triad example on Broadwell EP
$ mkdir /sys/fs/resctrl/memtoy;echo $$ >/sys/fs/resctrl/memtoy/tasks
$ triad -i 0 -r 0 -l 3 & (streaming 3 buffers of 256 MiB each)
$ cd /sys/fs/resctrl/memtoy/mon_data/mon_L3_00/
$ cat llc_occupancy
40260672 (40MB BDX L3 cache size)
$ cat mbm_local_bytes; sleep 1; cat mbm_local_bytes
1010472443904
1023447851008
$ perf guncore -M mem (uses CHA to compute local vs. remote traffic)
#---
Socket0 |
#---
Local Local Remote Remote|
Wr Rd Wr Rd|
MB/s MB/s MB/s MB/s|
#---
 3198.76 9594.92 0.12 1.09

(1023447851008-1010472443904)/(1000*1000)=12975 MB/S

Confidential + Proprietary

PMU based code heat map

● Where is the hot code?
● Why?

○ Improve code layout = Minimize ITLB pressure
○ Use large code pages (2MB or larger)
○ Do not exceed L1 ITLB 2MB entries capacity
○ Demote useless 2MB pages (save physical memory)

● How?
○ Using PMU based sampling
○ Intel: INST_RETIRED:PREC_DIST + PEBS or LBR

● Why INST_RETIRED:PREC_DIST (0x01c0)?
○ Introduced in Intel Sandy Bridge
○ HW assist to mitigate bias due to shadow of long latency instructions

Confidential + Proprietary

4KB Page
utilization

64B cacheline
utilization

page address
#TLB
2MB Total % Cum % Page size

pages
used util left

lines
used util Source

0x13800000 1 72.93% 72.93% 2MB 471 91.99% 41 12952 39.53% application

0x13a00000 2 6.87% 79.80% 2MB 109 21.29% 403 2855 8.71% application

0x13600000 3 4.34% 84.14% 2MB 160 31.25% 352 4298 13.12% application

0x400000 4 3.55% 87.69% 2MB 507 99.02% 5 15393 46.98% application

0xa00000 5 2.04% 89.73% 2MB 97 18.95% 415 336 1.03% application

0x14400000 6 1.89% 91.62% 2MB 3 0.59% 509 36 0.11% application

0xa600000 7 1.61% 93.24% 2MB 4 0.78% 508 49 0.15% application

0x600000 8 1.42% 94.66% 2MB 491 95.90% 21 11983 36.57% application

0xffffffff81000000 9 1.31% 95.97% 2MB 373 72.85% 139 5785 17.65% kernel

0x7f4631745000 0.83% 96.80% 4KB 1 100.00% 0 10 15.63% libc.so

0x7f4631f52000 0.70% 97.50% 4KB 1 100.00% 0 31 48.44% libm.so

0x12a00000 10 0.61% 98.11% 2MB 16 3.13% 496 158 0.48% application

0x800000 11 0.46% 98.57% 2MB 323 63.09% 189 4273 13.04% application

0x7f4631f4e000 0.22% 98.78% 4KB 1 100.00% 0 6 9.38% libm.so

0x7f463173f000 0.15% 98.93% 4KB 1 100.00% 0 7 10.94% libc.so

0x7f4631f9e000 0.10% 99.03% 4KB 1 100.00% 0 10 15.63% libm.so

Code heat maps

start size %smpl

.plt 0x4099f0 8KB 0.10%

.text 0x40c000 6MB 7.37%

.text.unlikely 0xa8fd20 300MB 2.37%

.text.hot 0x1373e510 3MB 84.14%

.text_startup 0x13a76ea0 10MB 0.00%

.text.other 0x144ce580 8KB 1.89%

libc 0x7f463171a000 1.76MB 1.31%

libm 0x7f4631f3e000 1.02MB 1.40%

kernel 0xffffffff81000000 1.38%

other 0.03%

99.99%

http://libc-2.19.so
http://libm-2.19.so
http://libm-2.19.so
http://libc-2.19.so
http://libm-2.19.so

Confidential + Proprietary

Code heat maps challenges

● Finding page sizes for a code address
○ Many different ways of getting huge pages for text (mremap, THP, tmpfs, ..)
○ Different impact on /proc/PID/maps
○ Difficulties for perf tool: must use heuristics

● /proc/PID/smaps
○ Shows if VMA is using large pages, but does not tell you the actual address range

● Need perf_events support
○ Need new sample format (perf_event_attr.sample_format)
○ PERF_SAMPLE_CODE_PGSZ: record code page size based on IP
○ PERF_SAMPLE_DATA_PGSZ: record data page size based on DLA
○ Must extract information from TLB or vm subsystem, tricky in NMI context

Confidential + Proprietary

Branch optimizations

● Minimize number of taken branches : FDO or autoFDO
○ Make the code as straight as possible

● Minimize branch misprediction
○ Minimize number of conditional branches

● Minimize branch misprediction cost
○ Mitigate penalty of misprediction

● Topdown branch cost
○ Front-End: Frontend Latency -> Branch Resteers = estimate cycles wasted to fetch correct path
○ Bad Speculation: wasted slots for uops not retiring or lost due to recovery from wrong path

● Large web workload impacted
○ Some large Google apps have 25% wasted uops

Confidential + Proprietary

PMU support for branches
● Conditional mispredictions always on direction (taken vs. not taken)

○ Target is always known as IP-relative offset

● Need misprediction rate per branch
○ BR_MISP_RETIRED.COND : does not tell taken vs. not taken

● Need rate of taken vs. non-taken per branch
○ Use PEBS + BR_INST_RETIRED.NOT_TAKEN but missing BR_INST_RETIRED.COND_TAKEN
○ Perf_events PEBS issue: return either branch source or target, need both

● New sample format: PERF_SAMPLE_SKID_IP (posted on LKML)
○ With PEBS:

● PERF_SAMPLE_IP : return source (precise>1) or target (precise = 1)
● PERF_SAMPLE_SKID_IP : return target

○ Without PEBS:
● PERF_SAMPLE_SKID_IP = PERF_SAMPLE_IP

Confidential + Proprietary

PEBS and branches
● PEBS captures IP at retirement of sampled instruction

○ PEBS.ip: next dynamic instruction
○ PEBS.eventing_ip (Haswell and later): instruction causing event

● PEBS with perf_events
○ precise=1 => PEBS.ip
○ precise=2 or 3 => PEBS.eventing_ip

$ perf record -e \
 cpu/br_inst_ret.conditional/pp …

%smpl
21.5% 400343: test %rax,%rax macro-fusion
42.1% 400346: je 400358
 400348: mov $0x404058,%edi
 ...
 400358: leaveq

$ perf record -e \
 cpu/br_inst_ret.conditional/p …

%smpl
 400343: test %rax,%rax
 400346: je 400358
41.5% 400348: mov $0x404058,%edi
 ...
20.2% 400358: leaveq taken

not taken

Confidential + Proprietary

Branch mispredictions example

Confidential + Proprietary

References

● Cache QoS
○ Intel SDM Vol 3b, Chapter 17.19 Intel Resource Director Technology
○ CAT at Scale: Deploying Cache Isolation in a Mixed Workload Environment - Rohit Jnagal & David Lo, Google
○ Heracles: Improving Resource Efficiency at Scale

https://lcccna2016.sched.com/event/7JX1/cat-at-scale-deploying-cache-isolation-in-a-mixed-workload-environment-rohit-jnagal-david-lo-google#
https://www.google.com/url?q=http://csl.stanford.edu/~christos/publications/2015.heracles.isca.pdf&sa=D&source=hangouts&ust=1531260304070000&usg=AFQjCNEvYfs0oR1TTvifplaU9aoqNILGFw

